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I.  INTRODUCTION 

A mathematical model fitting problem arises when one compares real 
observations with theoretical predictions.  The observations always 
contain observational inaccuracies and, likewise, the theory of the 
prediction can be inadequate.  If discrepancies between observations and 
predictions are unacceptably large for a particular situation, then one 
is faced with the task to adjust in a rational manner either the obser- 
vations, or the theory, or both so that an acceptable mathematical 
description of the event can be established.  The problem can be sub- 
divided conveniently into three subtasks, each of which requires a 
different approach and background information. 

First, one has to chose a model.  Normally, this requires supporting 
information from engineering, physics, geometry, etc., which may suggest 
or postulate a reasonable mathematical description of the observable 
event. We shall assume in this report that the model is formulated as 
a system of equations containing observations and, possibly, also some 
undetermined model parameters. 

Once the model is selected, one can compare predicted values of 
observable quantities with corresponding observations.  The comparison 
provides the basis for a rational adjustment of the observations and/or 
of the model.  This subtask of the problem is a purely mathematical part 
of model fitting and it belongs to the category of ill-posed problems. 
Its mathematical/numerical treatment is independent of the other two 
subtasks, i.e., of applications.  We shall be concerned with this part 
of the problem in the present article. 

After the adjustments have been carried out, one has to validate 
the mathematical model, unless it has been prescribed, e.g., by the 
geometry of the event.  The validation involves typically, but not 
necessarily, a statistical analysis of the discrepancies between obser- 
vations and predictions.  The result of the validation process may be a 
new formulation of model equations and subsequent fitting, i.e., a 
repetition of the whole task until some validation criterion is satisified, 
We shall not discuss this part of the problem, noticing only that the 
results of the second subtask provide the data basis necessary for a 
validation. 

If the model equations are not linear then the model fitting prob- 
lem generally leads to systems of complicated simultaneous equations 
and corresponding numerical difficulties may arise.  Often the numeri- 
cal treatment can be simplified by a reformulation of the model equa- 
tions, particularly by introduction of new variables through variable 



transformations.  Such manipulations have been suggested in textbooks 
and are routinely used in applications.  Examples of recently published 
applications where variable transformations have been used are Refer- 
ences 8, 9, and 10. 

A closer investigation of variable transformations in model fitting 
problems suggests that the formulations should be used more cautiously 
than some of the texts suggest. Therefore, we shall, in this report, 
present an investigation of some consequences of the transformations 
and draw conclusions about their usefulness for the simplification of 
the numerical treatment of model fitting problems. 

In Section II we shall formulate the mathematical model fitting 
problem in general terms and discuss the effects that can be anticipated 
from manipulations of model equations.  In Section III we shall specialize 
the considerations to nonlinear least squares problems and produce 
explicit formulas that are needed in such problems.  Some examples will 
be presented in Section IV, and Section V will summarize the conclusions 
that can be drawn from the theoretical discussions and from examples. 
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II.  GENERAL ASPECTS OF MATHEMATICAL MODEL FITTING 

Let the model equations be 

A(X)e - 0 , (1) 

where XeR is the vector of all observations, eeRP is a model parameter 
vector, and A(X) is an operator that operates on 6 and has a range Rr. 
We assume that the following relations hold between the dimensions n, 
r, and p: 

n >_ r > p ^ 0 . (2) 

By permitting the dimension p to be zero, we include in our consider- 
ations also cases in which the model equations do not contain free 
parameters.  Then Eq. (1) reduces to A(X) = 0. 

Typical for applications are cases in which the r Eqs. (1) for 9 
are independent and, because of Eq. (2), do not have a solution.  Then 
one replaces the model equations by another system 

A(X)e = 0 , (3) 

chosing the operator A(X) such that it approximates A(X) and has a 
solution.  The determination of A(X) can be considered as the central 
part of the model fitting problem. 

In order to have a measure for the approximation, we introduce a 
metric for the operators.  Let p[A(X), A(X)] be a metric.  Then one 
can formulate the mathematical model fitting as the following constrained 
minimization problem: 

A(X)e = 0 ,  W|p[A(X), A(X)][ = min. , (4) 

where W{p} is a generally convex object function.  The choice of the 
metric p and of the object function W{p} determines the type of the 
model fitting, e.g., least squares, maximum norm, etc. 

We shall now discuss the selection of an approximate operator A(X). 
First, we notice that the model operators A(X) and A(X) are generally 
needed and defined only within a finite neighborhood of the observations 
X.  Therefore, assumptions about properties of the operators need to be 



made for that neighborhood only.  Let the neighborhood consist of all 
points Z = X + C, whereby C Is restricted component-wise by 

y±    1   c±    1    T±*   1 • 1, 2, .... n . (5) 

The Intervals (y., T )  normally contain zero, but exceptions are 
possible and do occur In applications.  Second, we assume that within 
the neighborhood (5) A(Z) Is a continuous function of Z.  Then a rea- 
sonable choice of A(X) Is 

A(X) = A(X + C) . (6) 

The choice achieves a natural parametrlzatlon of the approximation. 
The approximation parameter Is the vector CeR and the operator A(X) 
depends continuously on the parameter within the restrictions (5). 

The parametrized model fitting problem can be formulated as 
follows: 

A(X + c)e = 0 , 

W|p[A(X + C), A(X)] ( = mln. 

(7) 

The quantities to be determined by Eq. (7) are the approximation parameter 
C and the model parameter 6.  We assume that the solution vector C Is 
within the limits specified by Eq. (5). 

We will need in the sequel some differentiability properties for 
the model operator. As far as X is concerned, we assume the properties 
to hold within the neighborhood (5).  With respect to 6 we assume 
that a similar neighborhood exists in the vicinity of the solution of 
Eq. (7) in which A(X)e is a continuous function of G.  The differen- 
tiability assumptions are that A(X + C)e is twice differentlable with 
respect to all its n + p arguments within the cartesian product space of 
the neighborhoods of X and 6. We also assume that within that space 

rank — = r , (8) 

and define 



p [A(Z), A(X)] = ||Z - X|| . (9) 

p Is a metric within the neighborhood in which Eq. (8) holds.  We also 
assume that the model equations do not contain redundant parameters. 
The assumption may be expressed as the requirement 

, 3A(X)9 ,in. 
rank —^r^— = p . (10) 

With the specialization Eq. (9), the model fitting problem becomes 

A(X + c)e = 0 , 

W |p [A(X + C), A(X)]( - W j ||C||( - min. 

(11) 

Eq. (11) is an abstract formulation of common model fitting problems. 
The difference C between the observations X and the "corrected obser- 
vations" X + C is called the residual vector.  In the formulation (11), 
we require that a norm of the residual vector be minimized, subject to 
model equations which have to be satisfied at X + C.  The model param- 
eter vector 6 is not essential in this formulation.  The number of model 
parameters may be zero and it is normally orders of magnitudes smaller 
than the number of approximation parameters; i.e., residuals.  The 
determination of 9 can be, of course, in some applications more important 
than the determination of C, but this is not always the case. 

A least squares model fitting problem is a special case of Eq. (11), 
characterized by a particular choice of the norm in the definition 
Eq. (5), and of the object function W{p}.  The least squares metric is 

p[A(Z), A(X)] = ||Z-X|| = [(Z-X)TR"1(Z-X)]1/2 , (12) 

where R is an estimate of the variance-covariance matrix of the obser- 
vations.  The least squares object function is 

W| p| = p2 . (13) 



Therefore, the least squares model fitting problem is defined by 

A(X + c)t =■ 0 , 

W=llcll  =cR~c= min. 

(14) 

In Eq. (14) we have used c and t instead of C and 6, respectively, 
thus indicating the least squares values of both parameter vectors. 

The use of R  as a norm matrix in the definition (11) makes the 
norm ||cl| and W dimensionless, which is very convenient when fitting 
results are compared.  If the variance-covariance matrix R is known 
exactly, and the observational errors are normally distributed, then the 
solution of Eq. (14) is a maximum likelihood solution of the approximation 
problemll.  The same maximum likelihood solution is obtained if R approx- 
imates the variance-covariance matrix up to an unknown factor.  In 
applications one has to be content with an estimate of R.  Then, often, 
the off-diagonal elements are assumed to be zero as a matter-of-course. 
Because the results of the model fitting depend on R, such assumptions 
should not be made without having reasons that zero is a better approxi- 
mation than a non-zero value.  The theoretical treatment is not complicated 
by the assumption that R is not diagonal, nor are the numerical compli- 
cations unsurmountable.  Realistic estimates of R are, however, important 
for the interpretation of the results, and for the validation of the 
fitting. 

We solve the optimization problem (11) or (14) using Lagrange 
multiplier technique, and call the multipliers correlates, as usual in 
adjustment problems.  Let KeR be a correlate vector and let the modified 
object function be 

W = J w|||C||| - KTA(X + C)e . (15) 

Necessary conditions for the solution of the optimization problem are 
obtained by setting equal to zero the partial derivatives of W with 
respect to the unknown C, 6, and K.  This yields the following set of 
normal equations. 

11 
H.J,  Britt and H.H.  Lueake,   "The Estimation of Parameter's in Nonlinear, 
Implicit Models," Teahnometrias,   Vol.   15,  pp.   233-247,   1973. 
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lie    W{||C||(   -|-[KTA(X + C)e]= 0   . (16a) 

~ [KTA(X + C)9]  = 0   , (16b) 

A(X + 0)9   =  0   . (16c) 

The solution of the model fitting problem (11) is among the solutions 
of Eqs. (16).  On the other hand, one cannot guarantee that a particular 
solution of the normal equations corresponds to the absolute minimum 
solution of Eq. (11), nor is the uniqueness of the solution given.  An 
investigation of these complications is not the subject of this paper. 
Mostly, such problems can be, and are taken care of by ad hoc measures 
based on background information from the application.  Therefore, we 
simplify our present theoretical discussion by assuming in this section 
that a numerical solution of Eqs. (16) can be obtained, and that it has 
been verified as the absolute minimum solution of Eq. (11). 

In least squares problems, the first term 3W/8C in Eq. (16a) is 
linear with respect to C.  Nonlinear expressions which could be possibly 
simplified by algebraic manipulations may occur in the second term in 
Eq. (16a), and in Eqs. (16b) and (16c).  The structure of these terms 
strongly depend on the form in which the model Eqs. (16c) are cast, and 
it is obvious that simplifications can be achieved by proper formulations. 
Particularly, one does not have to insist that each model equation be 
solved for a "dependent" observation.  Such a form is assumed in most 
textbooks on data reduction and postulated in computer programs for data 
reduction problems.  Quite often an implicit formulation of the Eqs. (16c) 
can be simpler, producing also simpler expressions for the derivatives 
in Eqs. (16a) and (16b).  The solution of the problem (11) is, of course, 
independent of the particular form in which the model equations are 
cast.  This remark is trivial in the present context, and it is a conse- 
quence of the formulation of the model fitting problem by Eq. (11). 
Reference 12 reports about numerous unsuccessful attempts to achieve a 
similar invariance statement when the problem was formulated differently. 

The aforementioned manipulations of the model equations can also 
include nonlinear transformations of the parameter 6.  Such transfor- 
mations do not affect the definition of the metric p, because the metric 
of the operator is independent of the operand.  Therefore, the trans- 
formations do not affect the first term in Eq. (16a) either, and are a 

12 
P.A.D.  DeMaine,   "Automatic Curve Fitting3  I.   Test Methods," Computers 
and Chemistry,   Vol.   2,  pp.   1-6,   1978. 

11 



powerful tool for the simplification of the rest of the equations. An 
example in which nonlinear parameter transformations are used to 
linearize the model equations is reported in Reference 9.  In Section IV 
we shall give other examples. 

The formal procedure of replacing parameters is as follows: 
Suppose that one wants to replace the parameter 6 by a whereby both 
parameters are related by a nonsingular function 

0 = g(o). (17) 

(Regularity of the transformation need to be assumed only within a 
neighborhood of the solution.)  Let the model equations be in terms 
of a 

A(X)a = 0 . (18) 

The operator A can be obtained from A always by the definition 

A(X)a = A(X)g(a)  , (19) 

however, often one can find other equivalent formulations that are 
simpler.  The metric p associated with A is defined as in Eq. (9) 

p [A(Z), A(X)] = ||z - X||  . (20) 

With this definition and the same object function W{p} as before one 
obtains the normal equations 

9 - w I I |C| | f - ^[^(X + C)o] = 0 , (21a) 
9C 9C 

|^[KTA(X + C)o] = 0 , (21b) 

A(X + C)a = 0 . (21c) 

12 



The solution vectors of Eqs. (16) and Eqs. (21) are related by 

C - C ,  0 = g(a) (22) 

The vectors K and K can be computed from these values using formulas 
given in the next section. 

The relation (22) is again a simple consequence of the formulation 
(11) of the model fitting problem.  Benda^ proves the correspondence 
(22) for a particular transformation and application and indicates that 
previous developers of software for such problems were not aware of the 
relation. 

If the solution of the model fitting task has been found from 
Eq. (21) in terms of a, but the parameter vector 9 is of interest, then 
one needs also a formula for the accuracy of 0.  Let us assume that the 
solution algorithm for Eq. (21) has provided information about the 
accuracy of a in form of an estimate Va of the variance-covariance matrix 
of the components of a.  (In Section III, we shall give formulas for Vg 
in least squares problems.)  Then an estimate of the variance-covariance 
matrix Vg of the components of 6 can be obtained by applying the linearized 
law of variance propagation to the relation (22).  The result is 

*, - IK mi • 
More complicated are consequences of such manipulations of the 

model equations that involve transformations of the observations.  This 
is so because the transformations now affect the definition of the 
norm p.  Next, we shall consider such transformations. 

Let a transformation of observations be 

Y = v(X) (24) 

with the inverse 

X = u(Y) 

13 



We assume that the transformation Is regular within the neighborhood (5), 
Including the solution X + C, and that the function u(Y) is there twice 
differentiable. The model Eqs. (1) are replaced by equivalent (usually 
simpler) equations 

A(Y)e = 0 . (25) 

The operator A(Y) can be obtained, e.g., by the definition 

A(Y)0 = A(u(Y))e , (26) 

but, as in the case of parameter transformations, usually other equiva- 
lent formulations can be found that are simpler. 

When we formulate the model fitting problem in terms of Y, we have 
to keep in mind that the goal is to minimize the distance C between the 
actual observations X and their corrected values X + C.  In least squares 
problems, only such a minimization yields under conditions a maximum 
likelihood solution.  Then the minimization problem (11) is 

Y = v(X) , 

A(Y + 8)6 = 0 , (27) 

W|| |u(Y + B) - X| | | = min. 

The normal equations for the problem (27) are 

11^ W| 1 lu(Y + B) - X| | } - |^ [KTA(Y + B)9] = 0 , (28a) 

1^- [KTA(Y + B)e] = 0 , (28b) 

A(Y + 6)9 = 0 . (28c) 

14 



The first term in Eq. (28a) Is not linear with respect to the unknown B 
unless the transformation (24) is linear.  Therefore, a nonlinear trans- 
formation that produces an operator A(Y) which is simpler than the 
original operator A(X), introduces nonlinear terms in Eq. (28a).  The 
new nonlinearities may offset the advantages gained by a simplification 
of the other terms in the equations. 

We shall pursue this point further in the next section and show 
in detail how the normal equations and algorithms are affected by 
transformations of observations specifically in least squares problems. 

III.  LEAST SQUARES MODEL FITTING 

We consider in this section the effects of variable transformations 
on least squares model fitting problems.  We shall first derive the 
basic equations for nonlinear least squares problems in terms of the 
original observations, and then show how the equations are affected 
by a transformation of the observations.  We simplify our notation by 
defining a vector function F(X,e) by 

F(X,e) = A(X)e  . (29) 

Then the model Eq. (1) is 

F(X,e) = 0 , - (30) 

and the least squares model fitting problem (14) is 

F(X + c,t) = 0 , 

W = Hell  - cTR c - min. 

(31) 

In the sequel we will use subscripts to denote derivatives.  Also, 
because derivatives of F(X + c,t), with respect to c, are identical to 
derivatives with respect to X we shall use the subscript X for both. 
Thus, e.g., 

Fx(X+c,t) = |j F(X+c,t) = |^ F(X+C,t) 

and 

15 



[KTF(X + c.t)]xt = ^L [KTF(X + c.t)] = -^ [KTF(X + c.t)] 

are matrices with the dimensions rxn and nxp, respectively. 

Using this notation, the normal equations corresponding to the 
problem (31) are 

R^c - [kTF (X + c,t)]T = 0 , (32a) 

kTFt(X + c,t) = 0 , (32b) 

F(X + c.t) = 0 . (32c) 

The normal equations are in general nonlinear with respect to c 
and t.  Therefore, their numerical solution will require some kind of 
iteration.  We obtain second order iteration equations for Eqs. (32) by 
expanding the normal equations at an approximation to the solution and 
keeping the linear terms of the expansion.  Let the approximation to the 
solution be C, K, and T, and that of the corresponding corrections be 
e, K, and x.  Then the expansion yields the following Newton equations 
for the corrections: 

[l-R(KTF)  ]e - RFJ-(K + K) - R(KTF)Y T= - C , (33a) 

(KTF)tXe + F^(K + K) + (KTF)ttT = 0 . (33b) 

Fve + p T = - F . (33c) 
A t 

The arguments of F and its derivatives in Eqs. (33) are X + C and T. 

16 



Newton-Raphson Iteration equations can be established by suitable 
manipulations of Eqs. (33)8»13»1^»15.  A set of such iteration equations 
are given in the Appendix. Most authors simplify Eqs. (33) by neglecting 
all terms that contain second order derivativesljH*!*',!?. This yields 
so-called Gauss-Newton procedures that have theoretically only linear 
convergence and that also may have other peculiarities-^. 

The final step in a model fitting problem is to obtain variance 
estimates of the solution in terms of the estimated variances of the 
observations. We shall restrict ourselves in this article to the esti- 
mation of the accuracies of the least squares value t of the parameter 
vector, and show how the estimation formulas change due to transformations 
of observables. We shall use the linearized variance propagation formula 
for the estimates.  Estimates of the accuracies of the corrected obser- 
vations x = X + c can be obtained by analogous processes. 

The formulas can be derived from the linear terms of an expansion 
of the normal Eqs. (33) at the solutionl3.  Let dx, dk, and dt be the 
differentials of the solution vectors x = X + c, k, and t, respectively. 
Then the expansion yields 

[(I - RkTF)xx]dx - RFx
Tdk - R(kTF)Xtdt = dX , (34a) 

(kTF)tXdx + F^dk + (k
TF)ttdt = 0 , (34b) 

Fvdx + F dt = 0 . (34c) 
A t 

The arguments of F and its derivatives in Eqs. (34) are x and t. 

12 
Allen J,  Pope,   "Two Approaahes to Nonlinear Least Squares Adjustments, " 
The Canadian Surveyor,   Vol.   28,  pp.   66Z-669,   1974. 
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Robert E.  Barieau and B.J.  Dalton,   "Nonlinear Regression and the 
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15 Aivars K.   CelmiyS,   "A Manual for General Least Squares Model Fitting," 
USA 'ARRAVCOM/Ballistic Research Laboratory Report ARBRL-TR-02167, 1979. 
(AD #B040229L) 

E.  Stark and E. Mikhail,   "Least Squares and Non-Linear Functions, " 
Photogrammetric Engineering,  pp.   405-412,   1973. 
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By manipulations of Eqs. (34) that can be done in various ways13.18 

one obtains linear relations between dt and dX, and between dx and dX, 
respectively. Let the former relation be 

N dt = S dX . (35) 

(Explicit formulas for N and S are given in the Appendix.) Then the 
estimated variance-covariance matrix V of the parameter vector t is 

Vt = vrlS  R ST(N"1)T • (36) 

It is obvious from the derivation of Eq. (36) that V , which itself 
is only a linearized approximation, depends on second order derivatives 
of F.  (The formulas in the Appendix show explicitly this dependency.) 
Neglect of the second order derivative terms renders a formula that is 
theoretically less than first order accurate.  Therefore, such a neglect 
has to be justified in each application by providing estimates of the 
magnitudes of the neglected terms.  Of the cited references, complete 
first order formulas are used only in References 13, 14, 15, and 18. 

Next, we introduce variable transformations into the least squares 
model fitting problem.  We can restrict ourselves to transformations 
of observations because, as shown in Section II, transformations of 
model parameters have the same effects as simple algebraic manipulations 
of the model equations. 

Let, as in Section II, the transformation be given by 

Y = v(X) (37) 

with the inverse 

X = u(Y) . 

In terms of Y, the least squares model fitting problem is defined by 

18 
Aivars CelmiyS,   "Least Squares Adjustment with Finite Residuals for 
Non-Linear Constraints and Partially Correlated Data," Ballistic 
Research Laboratory Report BRL-R-16S8,   1973.   (AD #766283) 
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Y = v(X) , (38a) 

H(Y + b,t) - 0 , (38b) 

W = | |u(Y + b) - X| |2 - [u(Y + b) - XjV1 [u(Y + b) - X] = mln. 

(38c) 

Eq. (38b) is a model equation, equivalent to Eq. (30) and expressed In 
terms of Y. 

The normal equations for the problem (38) are 

[u^Y + b^V1 [u(Y + b) - X] - [k^Y + b,t)]T= 0 (39a) 

kTHt(Y + b.t) =0 , (39b) 

H(Y + b.t) = 0 .. (39c) 

Corresponding Newton equations for corrections 3, K, and T of approxi- 
mate solutions B, K, and T, respectively, are 

[I - QH]B - QH^ • (K + K) - Q(KTH)YtT = - A , (40a) 

(KTH)tY3 + VL£t'   (K + K) + (KTH)ttT = 0 , (40b) 

1^3 + HtT = - H , (40c) 

where 

T = (u^)"^ ' ^^ Q = vxRvx = (uY) "R (up   , (41) 

A = vx • [u(Y + B) -X]=vx- C - (UY)"1 • C , (42) 
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5 = (KTH)YY - (uTR 1C)YY . (43) 

The arguments of the functions H and u in Eqs. (40) through (43) are 
Y + B and T, and the last term in Eq. (43) is differentiated assuming 
C = u(Y + B) - X to be constant.  The term is a symmetric nxn matrix 
containing second order derivatives of the transformation function u(Y). 

A comparison of Eqs. (40) with Eqs. (33) shows that the important 
changes in the Newton equations due to the transformation (37) are in 
Eqs. (40a).  The rest of Eqs. (40) is formally identical to the corres- 
ponding terms in Eqs. (33), if F(X,0) is replaced by H(Y,e).  In Eqs. (40a) 
we see three other replacements:  the estimated variance-covariance 
matrix R is replaced by Q, the right-hand side -C is replaced by -A, and 
the term (KTF)   is replaced by S. 

The replacement of R by Q corresponds to an application of the 
linearized variance propagation formula to the transformation (37). 
The replacement of the right-hand sides is a linearized transformation 
of the residuals C into the Y-space.  If the transformation (37) is 
linear, then only these two replacements occur.  If, however, the trans- 
formation is nonlinear, then the last term in Eq. (43) does not vanish 
and, because it contains second order derivatives of u(Y), it can be 
quite complicated.  This complication can offset algorithmic advantages 
gained by a simplification of other terms in the Newton equations. 

Iteration algorithms and formulas for the variances of the solution 
again can be obtained by manipulations of the Newton equations.  Explicit 
formulas are given in the Appendix.  We notice that second order Newton- 
Raphson algorithms necessarily contain second order derivatives of the 
model function H as well as of the transformation function u(Y).  The 
coding of the second order derivatives can, of course, be avoided if 
first order Gauss-Newton algorithms are used.  However, variance esti- 
mates of the solution can be calculated to a first order accuracy only 
if all the second order derivatives are available. 

The author has carried out numerical experiments to determine whether 
a solution of Eqs. (39) instead of Eqs. (32) has algorithmic advantages. 
The experiments were done with the utility programs described in Refer- 
ence 15.  The programs permit one to carry out the calculations either 
in terms of X, or in terms of Y, and to use either Newton-Raphson, or 
Gauss-Newton algorithms.  The experiments were inconclusive.  In some 
examples the algorithms converged better when the problem was formulated 
in X, in other examples a formulation in Y = v(X) produced better 
algorithms.  However, the differences in performance were never signifi- 
cant.  This result is in strong contrast to similar experiments involving 
transformations of parameters.  In those experiments, a suitable param- 
eter transformation often had a dramatic effect on the performance of 
the solution algorithm.  Some examples are given in the next section. 
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Another possible benefit from nonlinear transformations of obser- 
vations could be a simpler problem formulation. The complexity of the 
normal equations Is thereby of secondary Importance, If one uses an 
available general utility program for their solution.  However, the model 
equations must be made available to the utility program, which means that 
the equations must be programmed.  Then one has the choice to program 
either the function F(X,e) with its first and second order derivatives, 
or the two functions H(Y,8) and u(Y) with their derivatives.  If the 
transformation is nonlinear, then normally the programming of H and u 
will not be simpler than the programming of F.  An exception may be the 
situation where the same transformation u(Y) (e.g., polar-cartesian) is 
used for several problems with different model functions H(Y,e), so that 
u(Y) has to be programmed only once. 

We may conclude that in general a transformation of observations 
offers little or no advantages over a formulation of the model equations 
in terms of the original observations.  There are, however, other useful 
applications of such transformations.  First, a graphical display of 
the results can be clearer in terms of Y than in terms of X.  Second, 
and more importantly, the transformations can be a convenient method to 
derive a "falsified" problem that can be solved easily and that provides 
initial approximations to the unknown least squares solution vectors. 
One can falsify the problem; e.g., by using a nonlinear transformation 
but linearizing its effects on the problem formulation.  A simple and 
effective falsification is to replace the problem (38) by 

Y = v(X) , (44a) 

H(Y + b,t) - 0 , (44b) 

W* = bT [u^(Y)R"1uY(Y)]b = min. (44c) 

The formulation is identical to the correct formulation (38) only if the 
transformation is linear, but the normal equations for the false problem 
(44) are simple: 

qh -  [k^Y + b,t)]T = 0 , (45a) 

kTHt(Y + b,t) =0 , (45b) 

H(Y + b,t) = 0 , (45c) 
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where 

Q = [^(Y)] h  [uj (Y)]"1 . (46) 

This system can be much simpler and easier to solve than Eqs. (32) or 
the equivalent Eqs. (39).  Its solution is, however, not the least 
squares solution but an approximate solution of unknown quality. 

Initial approximations to the solution also can be obtained by 
other falsifications in addition to the one described, or instead of it. 
Such falsifications are, e.g., assumptions that certain observations are 
error free, that some correlations are zero, that some model parameters 
have prescribed values, etc. 

IV.  EXAMPLES 

The first example is a case involving transformation between polar 
and cartesian coordinates.  We shall compare results that are obtained 
using the approach of the previous section with results that are obtained 
by following suggestions by other authors.  In data processing literature, 
one finds different suggestions.  The simplest one is to treat the prob- 
lem after transformation as if the transformed quantities were observed. 
It is clear from the discussions in Section II that such an approach 
does not produce the least squares solution, i.e., it does not minimize 
Wi||C| }, even if the transformation is linear.  The most sophisticated 
suggestionJ-.»,10 is to apply the transformation (46) to R, i.e., to 
solve the system (45).  As we have seen in the previous section, this 
approach yields the least squares solution only if the transformation 
Y - v(X) is linear.  The following example illustrates the practical 
consequences of such a problem falsification. 

Let the observations be distances r. and azimuth angles cf). , and let 
the model equations represent a straighthine in cartesian coordinates. 
Then the model equations are in terms of the original observations 

F(r,*;a,b) =   < 

r1sin(j)    - a - br  cos(f)    =  0 

r2sin412  - a - br2cos(j)2  = 0 
(47) 

r  sin(j)    - a - br  cos*    = 0 n n n n 

22 



The transformation of the observations into cartesian coordinates is 

Xi " ri C08*i • 

yi " ri 8in<*,i » i " 1» 2, ,.., a , 

(48) 

and the model equations are in terms of the transformed observations 

! 

H(X,Y;a,b) -  < 

y-L - a - bx;L - 0 

y2 - a - bx2 - 0 

y - a - bx =0 n       n 

The Jacobian matrix of the transformation is 

0 

n 

where 

(49) 

(50) 

3 0^^) /cos^    -r1sin(i>1\ 
1 "   3(ri'<t,i) Isla*.       ricos^iJ (51) 

We assume for simplicity that all observations are independent 
with estimated standard errors eri and e^, respectively. Then the 
estimated variance-covarlance matrix R is the diagonal matrix 
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/ 

R = 

'rl 

♦1 
'r2 

'♦2 
(52) 

rn 

'<|in 

The transformed variance-covariance matrix Q is according to Eq. (46) 
the block diagonal matrix 

Q = JRJ = 

Q,   o 
/ Qi 

"  I 

(53) 

where 

,2   2   2 2  2 
'e .cos ()) ,+e , .r .sin 6. 
ri    i $1 i    i 

2  2  2 
(e .-e . .r .)sin(j) .cosctj 
rx 6i i    i   i 

i \  2  2 2 
(e .-e , .r .)sin<t) .cosd).   e .sin A .+e , .r .cos 6. 

(54) 

For a numerical example, we take the ten points listed in Table 1 
as observations and assume that their standard errors are 

e . = 0.048, ex. = 27.5°, i = 1, 2, ..., n. ri (f11 »  >    » (55) 

We made three adjustments.  First, the r,<t)-data were used together 
with the model Eqs. (47).  In the second adjustment, the x,y-data were 
used together with the model Eqs. (49) and the transformation function 
(48) in a utility program  based on the normal Eqs. (37).  The results 
of both adjustments were identical, as they should be, and they are 
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TABLE 1.  OBSERVATIONS ^ AND r AND CORRESPONDING 
CARTESIAN COORDINATES 

206.6° 0.559 -0.50 -.025 

26.6° 1.342 1.20 0.60 

26.6° 2.236 2.00 1.00 

26.6° 3.354 3.00 1.50 

26.6° 4.472 4.00 2.00 

123.7° 1.803 -1.00 1.50 

92.9° 1.952 -0.10 1.95 

68.2° 2.693 1.00 2.50 

52.4° 4.100 2.50 3.25 

42.0° 6.727 5.00 4.50 

TABLE 2.  ADJUSTMENT RESULTS 

Case 1 and 2  (Original and Transformed Problem) 

a = 0.381 ± 0.298 

b = 1.141 ± 0.744 

m = 1.24541 o 

Case 3  (Falsified Problem) 

a = 0.680 ± 0.407 

b = 1.837 ± 0.259 

m = 1.75646 o 

c  = 0.015065 
ab 

c  = -0.568659 ab 

The standard error of weight one, m , is not included in the standard 

errors of the parameters. 
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listed in Table 2.  The listed standard errors of the parameters are the 
square roots of the diagonal elements of Vt, computed with formula (36). 
The correlation coefficient cab is the off-diagonal element of the cor- 
relation matrix C , defined by 

Ct -  Dt   Vt Dt (56) 

where Dt is the diagonal matrix of V . The standard error of weight 
one is defined by t 

mo= [^cT^r1/2-c^w]-   . (57) 
1/2 

Figure la shows the result of the adjustment in the (|),r-plane, 
i.e., in the plane of the original observations.  The accuracies of 
the observations are indicated by error ellipses around the observed 
points.  The adjustment is indicated by connecting the observed points 
with the corresponding corrected locations on the fitted curve.  The 
figure shows that all adjustments are in the direction of largest 
uncertainties. 

Figure lb shows the same result in the x,y-plane.  The accuracies 
of the transformed observations are again indicated by error ellipses, 
corresponding to the transformed variance-covariance matrices C^.  In 
this presentation the adjustments seem to be in directions other than 
those with largest uncertainties.  This is typical for nonlinear trans- 
formations of observations.  The object of the fitting is to minimize 
residuals of the original observations.  The presentation in the x,y-plane 
is distorted by the nonlinearity of the transformation. 

In a third adjustment we used the x,y-data, the model Eq. (49), and 
the variance-covariance matrix Q, defined by Eq. (53).  The treatment, 
suggested by Demlngl and other authors, was described in Section III, 
Eqs. (44) through (46), as a falsification of the problem.  The numerical 
results of this adjustment are listed In Table 2.  They are different 
from the previous results, and the Increase of m indicates that the 
solution is not optimal.  We notice also that the correlation coefficient 
Cab has chanSed its magnitude and sign. 

Figure 2b shows the results of the adjustment in the x,y-plane. 
It indicates that the adjustment would indeed be optimal, if x,y were 
the observations and Q were their variance-covariance matrix.  However, 
when the same results are plotted in the (l),y-plane. Figure 2a, then it 
becomes obvious that the adjustment has not achieved the goal to minimize 
the residuals of the original observations <|),r.  The treatment of 
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60 120 180 2H0 300 

Figure la. Adjustment in (j),r-space. 

The data are shown with their one standard error ellipses and the 
adjusted curve is shown with one standard error confidence limits. 
The same results are shown by Figure lb in the cartesian x,y-plane. 
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Figure lb. Adjustment in (j),r-space. 

The transformed data are shown with their one standard error ellipses 
and the adjusted line is shown with one standard error confidence 
limits. The same results are shown by Figure la in the ^.r-plane of 
observations. 
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Figure 2a. Falsified Adjustment in x,y-space. 

The data are shown with their one standard error ellipses and the 
adjusted curve is shown with one standard error confidence limits. 
The same results are shown in Figure 2b in the cartesian x,y-plane. 
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Figure 2b. Falsified Adjustment in x,y-space. 

The transformed data are shown with their one standard error ellipses 
and the adjusted line is shown with one standard error confidence 
limits. The same results are shown in Figure 2a in the (t),r-plane of 
observations. 

30 



transformations of observations in this form is a falsification of the 
problem. The results are approximations to the least squares solution, 
but since the quality of the approximations is not known, they may be 
useful only as initial approximations for a least squares algorithm. 
However, in a case like this example, an initial approximation could be 
simpler obtained, e.g., graphically by drawing a straight line in the 
x,y-plane through the observations. 

Next, we present an example for the linearization of parameters. 
Let the model equation be 

B     C 
y - Ax exp (-) = 0 , (58) 

where x and y are observations and A, B, and C are model parameters. 
An equivalent model formulation is 

Iny - a - b Inx - — = 0 . (59) 

In Eq. (59) the parameters a, b, and c enter linearly.  One can expect 
a much better performance of solution algorithms if Eq. (59) is used. 
The parameter transformation is in this example 

A = e  , 

B = b , (60) 

C = c , 

and the Jacobian matrix, needed in Eq. (23) is 

/ ea  0  0 \ 

\0   0  1/ 

Another example is the trigonometric model 

y - A cos 2=- = o . (62) 
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An equivalent model is 

y - a sln(cx) - b cos(cx) . (63) 

The corresponding parameter transformation Is 

a = A sln(B/C) , 

b = A cos(B/C) , 

c = 1/C , 

with the JacobIan matrix 

3(A,B>C) _ /aCa.b.c) \-l 
3(a,b,c)    l3(A,B,C) 

(64) 

sln(B/C)   (A/C)cos(B/C)   -(AB/C )cos(B/C) 

is; 

,2 
cos(B/C)  -(A/C)sln(B/C)   (AB/C2)sln(B/C) (65) 

-l/C 

In this example, the model (63) Is linear only with respect to two 
parameters.  However, the difference between numerical treatments of the 
problem Is dramatic If one uses Eq. (62) or Eq. (63), respectively.  In 
numerical experiments we found that In order to achieve convergence, 
one had to start with parameter values A,B,C that were very close to 
their least squares values. Using the parameters a,b,c and the model 
Eq. (63), one achieves fast convergence, e.g., with the Initial values 
a=b=0. 

V.  SUMMARY AND CONCLUSIONS 

Manipulations of model equations that produce simpler but equiva- 
lent equations can greatly facilitate the preparation of least squares 
problems (e.g., computer programming) for utility routines. The manip- 
ulations can also Improve the performance of numerical algorithms. If 
the manipulations are merely algebraic and/or Involve nonlinear trans- 
formations of the model parameters, then their application Is straight- 
forward and their Implementation simple.  If, however, the manipulations 
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include transformations of observations, then one has to transform also 
the normal equations correspondingly. Neglect of this transformation 
falsifies the problem and produces results that are of unknown quality 
and equally reliable as, e.g., a graphical construction of a fitting 
curve.  A correct implementation of transformations of observations 
requires the programming of the transformation function, including its 
first and second order derivatives.  It also does not Improve the per- 
formances of algorithms. Therefore, in most cases, it is more efficient 
to formulate the model equations in terms of the original observations, 
thereby avoiding the programming of the transformation function. 

The need for second order derivatives of the model equations has 
been often overlooked.  In order to avoid the programming of these 
derivatives, most authors suggest to use a first order Gauss-Newton 
algorithm for the solution of the normal equations, instead of a second- 
order Newton-Raphson algorithm. The performance of the former may be 
often comparable to the latter, because even with more iterations, the 
computing effort can be less due to the simpler equations.  Second-order 
derivatives of the model equations (and of the transformation function) 
are, however, needed to compute the linear terms in formulas for variance 
estimates of the results.  Their neglect cannot be justified cursorily 
by the argument that linearized model equations are already second order 
accurate and, therefore, their second order derivatives are not needed. 
It can be shown that the linearized normal equations do contain these 
derivatives and, therefore, are needed in the linearized variance propa- 
gation formula. Formulas for variance estimates that do not contain 
second order derivatives are less than first order accurate. 
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APPENDIX 

DERIVATION OF ITERATION FORMULAS 
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We provide a set of iteration formulas that are derived from 
the Newton equation (34) by algebraic manipulations.  First, we define 
the following matrices: 

G = (F^)"1 (A-l) 

A = RFjGFx-I (A-2) 

F = [l+ARO^F)^]'1 (A-3) 

Eo = r.[AC-RFxGFx] (A-4) 

E1 = r-[RFxGFt+AR(K
TF)Xt] (A-5) 

Do " (KTF)tX " FtGFXR(KTF)XX (A-6) 

Di = (KTF)tt " FtGFxR(KTF)xt (A'7) 

N = F^GFt - \+  D0E1 (A-8) 

The iteration equations are 

Nx = FJG(FXC-F) + D0E0 (A-9) 

K+K = G(FxC-F)+G[Ft+FxR(K
TF)Xt]T-GFxR(K

TF)xxe (A-10) 

e = EQ-EJ^T  . (A-ll) 

Numerical experiments have shown that the convergence of the 
iteration is enhanced if the equations are used in a subiteration 
mode by iterating alternatively on the parameters and residuals, 
respectively.  For parameter subiteration only equations (A-9) and 
(A-10) are used, assuming e=0.     For residual subiteration one sets 
T=0 and uses equations (A-10) and (A-ll). 
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In the variance formula (36) one uses N, defined by equation 
(A-8) and 

S = F^GFX + DQFA. (A-12) 

Another equivalent set of Newton-Raphson iteration equations is 
given in Reference 13. None of the sets is numerically superior to 
the other, and both require subiterations of parameters and residuals 
for efficiency. 

Gauss-Newton iteration equations can be obtained from Newton- 
Raphson iteration equations by setting all second order derivatives 
equal to zero.  The convergence of Gauss-Newton algorithms is inferior, 
but in some applications they have a larger domain of convergence. 

Iteration equations for least squares problems with transformations 
of observations can be obtained from the formulas in this Appendix 
by substituting 

Q for R 

A for C 

and 

5 for (K1?)^  . 

Expressions for Q, A, and H in terms of the model and the transformation 
functions are given in Section III, equations (41), (42), and (43). 
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